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PLANAR REGULAR ONE-WELL-COVERED GRAPHS

Michael R. Pinter *
Belmont University
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Abstract

An independent set in a graph is a subset of vertices with the property that no two
of the vertices are joined by an edge, and a maximum independent set in a graph is an
independent set of the largest possible size. A graph is called well-covered if every
independent set that is maximal with respect to set inclusion is also a maximum independent
set. If G is a well-covered graph and G - v is also well-covered for all vertices v in G,
then we say G is 1-well-covered. By making use of a characterization of cubic well-
covered graphs, it is straightforward to determination all cubic 1-well-covered graphs.
Since there is no known characterization of k-regular well-covered graphs for k > 4, it is
more difficult to determine the k-regular 1-well-covered graphs for k 2 4. The main result
in this regard is the determination of all 3-connected 4-regular planar 1-well-covered
graphs.
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Introduction
A set of points in a graph is independent if no two points in the graph are joined by

a line. The maximum size possible for a set of independent points in a graph G is called the

independence number of G and is denoted by a(G). A set of independent points which
attains the maximum size is referred to as a maximum_independent set. A set S of
independent points in a graph is maximal (with respect to set inclusion) if the addition to S
of any other point in the graph destroys the independence. In general, a maximal
independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [12] introduced the notion of considering graphs in
which every maximal independent set is also maximum; he called a graph having this
property a well-covered graph. Equivalently, a well-covered graph is one in which every
independent set can be extended to a maximum independent set. Sankaranarayana and
Stewart [15] and, independently, Chvé4tal and Slater [3], have shown that determining if a
given graph G is not well-covered is an NP-complete problem. Hence, determining if a
graph is well-covered is in the class of problems referred to as co-NP-complete. What is
not known is whether or not well-covered is an NP-complete property.

The work on well-covered graphs that has appeared in the literature has focused on
certain subclasses of well-covered graphs. The subclasses covered include cubic well-
covered graphs ([1], [2] and [14]), well-covered graphs whose independence number is
exactly one-half the size of the graph ([16], [4], [5]), well-covered graphs with girth at
least five [6], well-covered graphs without 4-cycles and 5-cycles [7], and products of well-
covered graphs [18].

Staples ([16] and [17]) introduced two subclasses of well-covered graphs which
she called 1-well-covered and W». A well-covered graph is 1-well-covered if and only if
the deletion of any point from the graph leaves a graph which is also well-covered. A well-
covered graph G is in the class W5 if and only if any two disjoint independent sets in G
can be extended to two disjoint maximum independent sets. Some other results for graphs
in W, were obtained in [11].

In this paper, we primarily consider 1-well-covered planar regular graphs.
Campbell characterized the cubic planar well-covered graphs in [1]; however, the technique
he employed becomes very cumbersome when applied to planar 4-regular or 5-regular
well-covered graphs. For this reason, we focus on the one-well-covered graphs. The
primary result is stated in Theorem 13.

Preliminarv Results

Staples [16] proved an equivalency between two seemingly different subclasses of
well-covered graphs, which we state as the following theorem.

Theorem 1. Suppose G is well-covered. Then G is 1-well-covered if and only if Ge W5.

Since we will appeal mostly to the notion of extending two disjoint independent sets
to disjoint maximum independent sets, henceforth we use the W, nomenclature instead of
referring to 1-well-covered graphs.

Consider a graph G which is not complete and point v in G. By deleting v and its
neighbors, we obtain a subgraph of G. Specifically, we define the subgraph G, = G-N[v].
Campbell [1] proved the following very useful necessary condition for a graph to be well-
covered.

Theorem 2. If a graph G is well-covered and is not complete, then G, is well-covered for
all vin G. Moreover, o(Gy) = o(G) - 1.




We prove in Theorem 3 that we have a similar necessary condition for a well-
covered graph to be in W,

Theorem 3. If a graph G is in W3 and G is not complete, then G, is in W5 for all vin G.
Proof. Letv be apointin G. Since G is not complete, then G, # &. By Theorem
2, graph Gy is well-covered and a(Gv) =a(G) - 1. Suppose I; and I, are disjoint
independent sets in Gy. Then Ij U (v} is an independent set in G, as is I, U {v}. Since G
is in W, there exists maximum independent setJ; 2 I, U (v} such thatJ; NI, =D. Since
Iou {v} and J;-v are disjoint independent sets in G, then there exists maximum
independent set J, 2 Io U {v} such that ], (J1-v) = @. Hence, J»-v and J;-v are disjoint
independent sets in Gy. Since Uil = a(G), then Dj-vi= a(G) - 1, fori =1, 2. Thus, J;-v

contains Iy, Jo-v contains I, and J;-v and J-v are disjoint maximum independent sets in
Gy. So any two disjoint independent sets in Gy can be extended to disjoint maximum

independent sets in Gy. By definition of the class W, we conclude that Gye W,. 1

The next lemma will play a significant role for us. We will use it to eliminate many
graphs from consideration as possible W, graphs.

Lemma 4. Suppose G contains an independent set S and point vg S such that (i) S U {v)
is independent, and (ii) if ye N(v), then y ~ x for some xe S (that is, S dominates N(v) ).
Then G is not in Wa.

Proof. If G is not well-covered, then G is not in W3. If G is well-covered, then
from conditions (i) and (ii), we have that S N\ N(v) = & and S dominates N(v). Thus, S

and {v} are disjoint independent sets in G which don't extend to disjoint maximum
independent sets in G. Therefore, G is not in Wa. 0

For graphs drawn in the plane, we say two faces are adjacent if they share a line. If
a face F contains point v, we say F is-incident to v. The gjze of a face is the number of
points it contains. We refer to the order and sizes of the faces incident to a point v as the

face configuration at v. To reduce the number of face configurations considered, we will
use the theory of Euler contributions. Lebesgue [8] developed the theory of Euler

contributions for planar graphs and Ore [9] and Ore and Plummer [10] used the theory to

study plane graph colorings. The Euler contribution of a point v, ¢(v), is defined as the
quantity ¢(v) = 1 - (1/2)deg(v) + Z(1/x;), where the sum is taken over all faces F; incident
to v and x; is the size of F;. If IF(G)! denotes the number of faces in the plane graph G,
then it follows that Z, §(v) = IV(G)I - IE(G)I + [F(G)l. Here the sum is taken over all points
v in G. Since Euler's formula for plane graphs says IV(G)I - IE(G)! + [F(G)I = 2, then we

have Z, ¢(v) = 2. Thus, ¢(v) must be positive for some v in G. If ¢(v) >0, we say vis a
point with positive Euler contribution.

Cubic W, Graphs

Consider the three graph fragments given in Figure 1. Note that fragments A and B
each have four semi-lines and fragment C has two semi-lines.

DilC iy wLEPECTED 1

u)’ME :
_ Didtribution/

Avallability Codes

&
0
O
—

2

Avail and/or
Dist Special ,




al a5 bl b2 b3 b c1 c2 .
j: i jI:ZB
a a
2 4
b_ b (o
a3 a6 b 2 %% b c6 Cs 4
A B C
Figure 1

Let W be the family of cubic graphs obtained from fragments A, B and C by
placing any number of the fragments in a cycle or path configuration and then joining the
left-hand semi-lines of one fragment to the right-hand semi-lines of the fragment on its left.
Since crossing the lines joining one fragment to another gives a graph which is isomorphic
to the graph obtained without crossing the lines, then we can assume the lines do not cross.

Building on the work of Campbell (1], Royle and Ellingham [14] proved that, with
a few small exceptions, all cubic well-covered graphs belong to W. We state their result in
Theorem 5.

Theorem 5: All cubic well-covered graphs, except for the 6 graphs in Figure 2, belong to

W. Moreover, all graphs in W are well-covered.
x

Using the characterization of cubic well-covered graphs given in Theorem 5, in the

next theorem we determine all of the cubic W graphs.

Figure 2

Theorem 6. The only cubic W, graphs are Ky and the triangular prism.
Proof. Of the 6 exceptional cubic graphs given in Figure 2, only K4 is a W3 graph.
For each of the other five graphs, it is straightforward to find two disjoint independent sets
which don't extend to disjoint maximum independent sets in G. We omit the details.
Suppose G is a graph in the family W. Then G is obtained by connecting
fragments A, B and C in paths or cycles.




Case 1. Suppose G contains fragment A. If a; ~ a5 and a3 ~ a4, then G is the
triangular prism. It is easily verified that the triangular prism is a W5 graph.

Suppose [V(G)I > 6. Without loss of generality, let x ~ as and y ~ ag, where x and
y are not in the original A fragment. Then x ~y and {y,a,} is independent. Thus, {y,2;}
and {as} don't extend to disjoint maximum independent sets in G. So Ge W,.

Case 2. Suppose G contains fragment B. If by ~ by and bs ~ bg, then {bs,bs} and

{b;) don't extend to disjoint maximum independent sets in G. So Ge W,.

Suppose IV(G)! > 8. Without loss of generality, let x ~ by and y ~ bs, where x and
y are not in the original B fragment. Then x ~y and {y,b;} is independent. Thus, (y,b;)
and {bs} don't extend to disjoint maximum independent sets in G. So G¢ W».

Case 3. Suppose G contains fragment C. Then IV(G}> 6. Letx~cijandy~c
such that x and y are not in the original C fragment. Then x ~y and {y,c3} is independent.
Thus, {y,c3} and {c;) don't extend to disjoint maximum independent sets in G. So

Geg Wj,.
Therefore, K4 and the triangular prism are the only cubic W3 graphs. 0

4-regular Planar W, Graphs

We now turn our attention to 4-regular W graphs. Since no characterization of 4-
regular well-covered graphs is known (unlike the situation for cubic well-covered graphs),
we focus most of our efforts on only the planar 3-connected 4-regular W graphs. But first
we show in Theorem 7 that no 4-regular W2 graph has a cutpoint.

Theorem 7. Suppose G is 4-regular and in W2, Then G is 2-connected.
Proof. Assume to the contrary that G has a cutpoint v. Since G is 4-regular, then
G-v must have exactly two components, say G and G, each containing two neighbors of

v. Let N(v) n G; = {a;,b1} and N(v) N G2 = {az,b;}. Define A,, A,, B; and B; as
follows: Aj=(N(a) N G;)- {b;}, Bi=(N®) N G;)- {a}, fori =1, 2. Let y;&B,.

Case 1. Suppose there exist points uj€ Ay, yj1€ By, uze Az and yse By such that
u, is not adjacent to y; (possibly u; = y1) and u; is not adjacent to y, (possibly u; = y,).
Then {uy,u3,y1,y2} is independent and so {uy,u3,y1,y2} and {v} don't extend to disjoint
maximum independent sets in G, a contradiction since G is in W5,

Case 2. So either every uj€ A is adjacent to every y;€ By, or every me Aj is
adjacent to every y2€ B2. Without loss of generality, assume every uje A; is adjacent 1o

every yi€ B;. Let ze A;. Note that z is not adjacent to by. Thus, {u;,a3} and {b;} are
disjoint independent sets in G which don't extend to disjoint maximum independent sets in
G, a contradiction since G is in Wa.

- Therefore, G cannot have a cutpoint. 0

The following four lemmas will be helpful in determining the 3-connected 4-regular
planar W3 graphs.

Lemma 8. Suppose G is 3-connected 4-regular and planar. Suppose v is a point in G with
face configuration (3,3,x,y), x, y 2 3, where two triangles incident to v share a line. If
two triangles at v are ujuav and usu3v, then u; is not adjacent to us.

Proof. Assume to the contrary that u; ~ u3. Let ug be the fourth neighbor of v (see
Figure 3). If u; has its fourth neighbor on one side of triangle ujuzv and u3 has its fourth
neighbor on the other side of triangle ujusv, then either {v,u;} or {v,u3} is a cutset of G.
This contradicts the 3-connected assumption. Thus, u; and u3 each have their fourth
neighbor on the same side of triangle u;u3v, and so either v or u; is a cutpoint for G. This
again contradicts the 3-connected assumption.




Figure 3

The next three lemmas are fairly obvious; hence, we omit proofs. Lemma 11 says
that two faces in a 3-connected planar graph which are incident to the same point either
have only that point in common or they are adjacent faces at the point and share only a line.

Lemma 9. Suppose G is 3-connected 4-regular and planar. Suppose F4 = vug...u; is an
n-face at v, n 2 3, and F) = vuju; is a triangular face at v such that F4 and F; share the line

vu). If xe F4 such that x¢ {v,u;}, then x is not adjacent to u,.

Lemma 10. Suppose G is 3-connected and planar. Suppose x and y are non-consecutive
points on a face of G. Then x is not adjacent to y.

Lemma 11. Suppose G is planar and 3-connected. Suppose v is a point of G with incident
faces Fy, Fa, ..., Fp.

(i) If F; and Fj share a line xv (i # j), then F; \ Fj=xv.
(ii) If F; and F; do not share a line of the form xv, for any xe N(v), then F; n Fj= {v}].

In the following lemmas, we will repeatedly use Lemma 4. In particular, if S and v
are an independent set and point, respectively, which satisfy the hypotheses of Lemma 4,
we will say that S and {v} don't extend to disjoint maximum independent sets in G. If G
is assumed to be a W5 graph, then we wiil have a contradiction.

For the next lemma only, we don't require G to be planar.

Lemma 12.1. Suppose G is 3-connected 4-regular and in W,. If G has a 4-wheel
configuration at a point, then G is Ks.

Proof. Assume v is a point in G with N(v) = {u;,uz,u3,u4}, and triangles uju,v
u2u3v, u3ugv and ugu;v forming a 4-wheel configuration at v.

Suppose u; ~ u3. If uz is not adjacent to uy, then {ua,u4} is a cutset for G. Soup~
uy. It follows that G is Ks.

Suppose u; is not adjacent to u3. Let x be the fourth neighbor of u3. If x ~ u;,
then {u;) and {u3} don't extend to disjoint maximum independent sets in G. So x is not
adjacent to u;.

Suppose x ~ uz and x ~ us. Then {x,u;] is a cutset for G since x is not adjacent 10
u;. So we can assume either x is not adjacent to u; or x is not adjacent to uq. Without loss
of generality, assume x is not adjacent to uy. Since G is 4-regular, there is a point y such
that y ~ x and y is not adjacent to u;. Then {y,u;) and {u3} don't extend to disjoint
maximum independent sets in G.

Hence, u; must be adjacent to u3, and so G must be Ks. D

?




We will attack the problem of finding all 3-connected 4-regular planar W, graphs
using the theory of Euler contributions. In each of the next ten lemmas, we consider a
particular face configuration at a point v. Afterwards, the result which we pursue will
- follow easily. We will implicity use Lemma 11 in each of these ten lernmas.

Lemma 12.2. Suppose G is 3-connected 4-regular planar and in W;. If G has a point v
with face configuration (3,3,3,4), then G is the graph given in Figure 4.

Figure 4

Proof. Suppose v has face configuration (3,3,3,4) with N(v) = {u),u3,u3,u4) and
the 4-face at v is uyvugx (see Figure 5).

u u
1 2

u 4 u3
Figure 5

From Lemma 8, u; is not adjacent to u3 and u3 js not adjacent to u4. From Lemma
9, xis not adjacentto vz and X is not adjacentto u3. From Lemma 10, u; and u4 are not
adjacent.

Let z be the fourth neighbor of u;. From above, ze {x,us}. Let {w} = N(u,) -
{x,v,u3}.

Case 1. Suppose z ~ uy. Since x is adjacent to neither uz nor us, then there exists a
point s ~ x such that s # z. Then {s,u;} is independent and so {s,uz} and {u4) do not
extend to disjoint maximum independent sets in G, a contradiction. Thus z i i

~ Case 2. Suppose z~ u3.

Case 2.1. If x and z are not adjacent, then {x,z} and {v} do not extend to disjoint
maximum independent sets in G. Sox ~z.

Case 2.2. If z ~ uy, then {x,u4} is a cutset for G. So z and u; are not adjacent.

Let m ~ u; such that me {x,v,uz}. Since G is planar, m and w are not adjacent (see Figure
6). If z~m, then {x,u4} is a cutset. So z and m are not adjacent. If z ~ w, then {x,w) is
a cutset. So z and w are not adjacent. But then {z,w,m) is independent and so {z,w,m]
and {v} don't extend to disjoint maximum independent sets in G, a contradiction.




Fgure 6

Thus, z and w3 are not adjacent.
Case 3. Suppose x ~ z.

Case 3.1. Suppose z and u; are not adjacent. Let ye ( N(uj) - {x,v,uz} ), and let
Y =N(y) - u;.

Case 3.1.1. Suppose there exists pe Y such that p is not adjacent to z. Then
{p,z,u4} is independent and so {p,z,us} and {u;} don't extend to disjoint maximum
independent sets in G.

Case 3.1.2. Thus, pe Y implies p~z Ify ~ z, then {z,u3} and {u;} don't
extend to disjoint maximum independent sets in G. Soy and z are not adjacent. But then
{z,v} and {y} don't extend to disjoint maximum independent sets in G.

Thus, x ~ z_implies z~uj. See Figure 7.
z
u
2
X
u 4 u3
w
Figure 7

Case 3.2. Suppose w and uj are not adjacent. Lety ~ u3, ye {v,u2,04). From
above, ye {x,z}). '

Case 3.2.1. If y ~ w, then {w,u;} and (u3} don't extend to disjoint maximum
independent sets in G. So y and w are not adjacent.

Case 3._.2. Suppose z ~y. Let {a,b} = N(y)-{z,u3}. If w~a and w~ b, then
{w,uz} and {y} don't extend to disjoint maximum independent sets in G. So, without loss
of generality, assume w is not adjacent to a. If a = x (that is, x ~ y), then (y,u4} is a




cutset. Soa#x and {w,a,u;} is independent. But then {w,a,u;} and {u3} don't extend
to disjoint maximum independent sets in G.

Hence, z and y are not adjacent.

Case 3.2.3. Suppose z ~ w. Then {w,u3} is a cutset. So z and w are not
adjacent.

Hence, (z,w,y} is independent and so {zw,y} and {v) don't extend to disjoint
maximum independent sets in G.

Thus, X ~ z_implies w ~ us.

Case 3.3. If z and w are not adjacent, then {w,z) and (v} don't extend to disjoint
maximum independent sets in G. Soz ~ w.

Thus, x ~ z_implies z~w.

Case 3.4. If x and w are not adjacent, then {x,w} is a cutset. So x ~ w.

Thus, x ~z implies x ~w. See Figure 8.

Figure 8

Consequently, if x ~ z then G must be the graph given in Figure 4.

Now, recall from earlier that the following sets are independent: {x,u3)}, {x,u3},
{z,u3}, {z,us}, (uz,us}, {ui,usz}, {u,ug}. Thus there exists y ~ us such that
ye {x,z,v,u;,u2,u4}). Since z and u4 are not adjacent, it follows by symmetry that y and u,
are not adjacent.

Case 4. If x ~ y, then by symmetry and the argument given in Case 3 for x ~ z, the
only W3 graph which can result is the graph obtained in Case 3.

Case 5. So we assume x is not adjacent to z and y is not adjacent to x.

If y and z are not adjacent, then {x,y,z} is independent and so {x,y,z} and {v}
don't extend to disjoint maximum independent setsin G. Soy ~ z.

_ Suppose y ~ u4. Since y is not adjacent to uy, then there exists w ~ y such that

we [x,z,v.,ul,uz,ug,u.;}. .If w ~ X, then {w,u2} and {u4} don't extend to disjoint
maximum independent sets in G. So w and x are not adjacent. _
Since G is 4-regular, there exist points s and t such that s and t are neighbors of x

and {s,t} N {v,y,z,u;,uz,u3,u4} =@. Suppose w and s are not adjacent. Then {w,s,u;}
and {u4) don't extend to disjoint maximum independent sets in G. So w ~ s and,
similarly, w ~ t (see Figure 9). But then {v,w} and {x} don't extend to disjoint maximum
independent sets in G.




Figure 9

Hence, y and uy4 are not adjacent. By symmetry, z and u; are not adjacent. Thus
there exists m ~ u; such that me {x,y,z v,u‘,uQ,u3,n4} If m ~ uy, then {z,u4} and (v}
don't extend to disjoint maximum mdcpendent sets in G. So m and u4 are not adjacent.

Suppose m ~ y. Then there exists a point n ~ u4 such that {n,z,u,} is independent,

where ng {x,v,u3}. But then {n,z,u;} and {u3) don't extend to disjoint maximum
independent sets in G. So m and y are not adjacent (see Figure 10).

Figure 10

From above, we see that {m,y,us} is mdcpendcnt. Then {m,y,us} and {uy} don't
extend to disjoint maximum independent sets in G.

Therefore, the graph shown in Figure 2.5 is the only 3-connected 4-regular planar
W, graph with the (3,3,3,4) face configuration.

Lemma 12.3. Suppose G is 3-connected 4-regular planar and in Wa. If v is a point in G,
then v cannot have face configuration (3,3,3,5).

Proof. Assume to the contrary that v has face configuration (3,3,3,5). Let N(v) =
(u,u2,u3,us} and the 5-face at v be abugvu;. From Lemma 8, nl_u_nm_ad;aggm_m_n; and
nmms_adxm&m From Lemma 9, a.xs.nszt.ad.lm_m_uz aisnotadjacenttous, bis
not adjacent to uy, and b is not adjacent to u3. From Lemma 10, 3 is not adjacent to us, u;
is not adjacent to u4, and b is not adjacent to uj.
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Thus, there exists x ~ u4 such that xé {a,b,v,u;,u2,u3}. By symmetry, there exists

y ~ uy such that ye {a,b,v,us,u3,u4} (we do not exclude the possibility that y = x).

Case 1. Suppose a ~x. Then {a,u5} and {ug)} don't extend to disjoint maximum
independent sets in G. So a is not adjacent to x. By symmetry, y is not adjacentto b .

Let {p} = N(“Z) - {V,U],U3}.

Case 2. If p = x (thatis, x ~ up) or p ~ a, then {a,us)and {u;} don't extend to
disjoint maximum independent sets in G. Sop # x and p and a are not adjacent.

Case 3. Suppose p ~ x.

Case 3.1. Suppose p ~ u3. If x ~uy, then {p,t,u;} and {us} don't extend to
disjoint maximum independent sets in G, where t ~ b such that te¢ {a,us}. So x is not
9djécent to u;. Thus {x,u;) and {u3} don't extend to disjoint maximum independent sets
in G.

Hence, p is not adjacent to us.

Case 3.2. Suppose x ~ u3.

~ Case 32.1. If x ~ borx ~uy, then {b,u;} and {u3} don't extend to disjoint
maximurn independent sets in G. So x is adjacent to neither b nor u;.

Thus, there exists z ~ x such that z¢ {a,b,u;,u3,u4,p).

Case 3.2.2. If z is not adjacent 10 a, then {a,z,uz)} is independent and so {a,z,u;}
and {u4} don't extend to disjoint maximum independent sets in G. Soz ~ a.

Case 3.2.3. If z ~ b, then {z,u7} and {u4)} don't extend to disjoint maximum
independent sets in G. So z is not adjacent to b.

Case 3.2.4. If z is not adjacent to uy, then {b,z,n;} is independent and so {b,z,u;}
and {u3)} don't extend to disjoint maximum independent sets in G. So z ~ u;. But then
{p,z} is a cutset for G.

Thus, x is not adjacent to u3. So there exists w ~ u3 and m ~ w such that

we {v,uz,us} and {w,m} N (p,x} = O (see Figure 11). But then ([b,m,u;} is

@ndépendent and so {b,m,u;} and {u3} don't extend to disjoint maximum independent sets
in G.

Figure 11

Hence, p_is not adjacent to x. Thus {p,x,a} is independent. By symmetry, there
exists q ~ u3 such that q& {v,uz,u4,a,y} and g is not adjacent to y.

If any member of {p,x,a} is adjacent to u3, then {p,x,a} and {v)} don't extend 0
disjoint maximum independent sets in G. So q¢ {a,p,x}.

Suppose x ~ uy (thatis, x = y). Then {p,t,us} and {u;} don't extend to disjoint
- maximum independent sets in G, where t ~ a such that te {b,u;}. Thus, x is not adjacent
to u;; hence, x #y. See Figure 12.
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Suppose p ~ q. Then {q,y,us} and {uz)} don't extend to disjoint maximum
p-and q are not adjacent.

independent sets in G. So p_an Suppose g ~ x. Then (x,u;} and
{u3} don't extend to disjoint maximum independent sets in G. go i ol

. Qs not adjacent fo x
and, by symmetry, ) . If g ~ a, then {x,y,p,q} is an independent ser.
Thus, (x,y,p,q} and {v} don't extend to disjoint maximum independent sets in G. So qQis
not adjacent to 3

, and it follows that {a,x,p,q} is independent. But then {a,x,p,q} and (v}
don't extend to disjoint maximum independent sets in G.

Therefore, the face configuration (3,3,3,5) cannot occur. 0

Lemma 12.4. Suppose G is 3-connected 4-regular planar and in W,. K v is a pointin G,
then v cannot have face configuration (3,3,3,n),n 2 6.

Proof. Assume to the contrary that v has face configuration (3,3,3,n), n 2 6. Let
N(v) = {u1,92,u3,u4}, and let the n-face at v be uscby. . .baugv . From Lemma 8, uyis

n and y is not adjacent to us. From Lemma 9, a is not adjacent to uj, u;
and b are not adjacent, ¢ is not adjacent to uy, a is not adjacent to u,, b is not adjacent to

a
uz, ¢ is not adjacent to up, and u; _Qrﬁjzz_a_rc_ngtggjm. From i..cmma 10, ais not
adjacent to ¢, a is not adjacent to u3, and ¢ 15 not adjacent to uy.

Now let s ~ uy such that s {v,u;,u3}.

Case 1. Suppose s ~c. Then {c,us} and {uz) don't extend to disjoint maximum

independent sets in G. Thus, § is not adjacent to¢.
Case 2. Suppose s ~ a.

Case 2.1. If s ~ uy, then {c,uq) and {u;} don't extend to disjoint maximum
independent sets in G. So s is not adjacent to ug.

. Let w ~ ug such that we {a,v,u;}.
Case 2.2. If w~a, w ~ s and w ~ uy, then (a,u3} and {u;} don't extend to

disjoint maximum independent sets in G. Thus there exists t ~ w such that te {a,s,u;,u4).
But then (b,t,uz} and {u4)} don't extend to disjoint maximum independent sets in G.
Hence,sisn jacen

Case 3. If s ~ uj, then (a,s,c) and {v) don't extend to disjoint maximum
independent sets in G. So s and u; are not adj .

Lett ~u;, where te {v,u3,u4}; by symmetry with s, t is adjacent to neither a nor c.

Case 4. Suppose s ~ t.

Case 4.1. Suppose s ~ u3.

Case 4.1.1. Suppose t ~ ug. Let {w} = N(t) - {s,u3,us}. If a ~ w, then {a,u;}
and {t} don't extend to disjoint maximum independent sets in G. So a is not adjacent to w.

Let N(a) - (b,us} = {y1,y2}. f w~b, w~y; and w ~ yz, then (w,v} and {a)
don't extend to disjoint maximum independent sets in G. Thus there exists some x ~a, x #
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ug, such that x is not adjacent to w (see Figure 13). But then {x,w,u;) is independent and
so {x,w,u3} and {u4} don't extend to disjoint maximum independent sets in G.

Figure 13

Case 4.1.2. Sot is not adjacent to ug. Then {t,u4,c} and {uz} don't extend to
disjoint maximum independent sets in G.

Case 4.2. Hence, s is not adjacent to us. It follows that {a,s,u3} is independent.
Hence, {a,s,u3} and {u;} don't extend to disjoint maximum independent sets in G.

Thus, § is not adjacent to t. Then {s,t,a,c} is independent and {s,t,a,c} and {v}
don't extend to disjoint maximum independent sets in G.

Therefore, the face configuration (3,3,3,n), n 2 6, cannot occur. a

Lemma 12.5. Suppose G is 3-connected 4-regular planar and in W,. If v is a pointin G,
then v cannot have face configuration (3,3,4,4).

&gg_f} Assume to the contrary that v has face configuration (3,3,4,4). Let N(v) =
{uj,uz,u3,u4}.

Case 1. Suppose the cyclic order of the faces at v is (3,4,3,4), with faces ujuyv,
uzbuzv, uzuyv and usauv. By Lemma 9, a is not adjacent to uy, 2 is not adjacent to u3, b
is not adjacent to uj, and b is not adjacent

If a is not adjacent to b, then {a,b} and {v] don't extend to disjoint maximum
independent sets in G. So a ~b. Thus there exists x ~u;, ¥ ~up, $~uj3 and t~uy such
that {x,y,s,t} N {a,b,v,uj,uz,u3,u4} = 3.

If x =y and s =1t, then {x,s} and {v) don't extend to disjoint maximum
independent sets in G. So either x # y or s # t. Without loss of generality, assume x 2 v.
Suppose x ~y. Then {y,us) and {u;} don't extend to disjoint maximum independent sets
in G. So xis not adjacentto y.

If s = t, then {s,x,y} and {v} don't extend to disjoint maximum independent sets in
G. Sog#t. Sinces#tand by symmetry with x and y, it follows that § is not adjacent 10
t. But then {s,t,x,y} is independent since G is planar, and so {s,tx,y} and {v} don't
extend to disjoint maximum independent sets in G (see Figure 14).
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Figure 14

Thus the cyclic face order (3,4,3,4) cannot occur.
Case 2. Suppose the cyclic face order is (3,3,4,4), with faces ujuzv, uyu3v,

uzbugv and ugau;v. By Lemma 8, ;. _ls_mijd‘\mmnBBy Lemma 9, 2 is not adjacent
1o uy, b is not adjacent to up, and up 1s not adjacent to us. By Lemma 10, y; is not adjacent

10 ug4 and u3 is not adjacent to uy.
Case 2.1. Suppose a ~b. Then there exists z ~ ug and w ~ z such that {w,z} N

{a,b} = . Since G is planar, {uj,u3, w] is mdcpendcnt, hence, {u;,u3,w} and {ug)
don't extend to disjoint maximum independent sets in G. Thus, 3 is not adjacentto b.

Let y ~ up such that ye {v,u;,u3}.

Case 2.2. Suppose y ~ a.
Case 2.2.1. Suppose y ~ u; (see Figure 15).

Thus, either we have a (3,3,3,4) face configuration at uy, or there is a point inside
triangle yau, or inside triangle yupu;. From Lemma 12.2, point u; cannot have a (3,3,3,4)
face configuration. If there is a point inside triangle yau,, then (y,a} is a cuser,
contradicting 3-connectedness. If there is a point inside triangle yuyu, then y is a cutpoint,
contradicting 3-connectedness.

Case 2.2.2. Hence, y and u; are not adjacent (we are still assuming that y ~ a).

Since y is not adjacent to uy, there exists z ~ u; such that z¢ {a,b,v,y,u;,uz,u3,u4}, and w

~ z such that we {a,y). Then {w,u3,us} is independent and so {w,u3,uq} and {u;]} don't
extend to disjoint maximum independent sets in G.




14

Hence, y is not adjacent to a and, by symmetry, y js not adjacent to b. It follows
that {a,b,y} is independent and so {a,b,y} and {v} don't extend to disjoint maximum
independent sets in G.

Thus, the cyclic face order (3,3,4,4) cannot occur. From Cases 1 and 2, we
conclude that the face configuration (3,3,4,4) cannot occur. 1]

Lemma 12.6. Suppose G is 3-connected 4-regular planar and in W,. If v is a point in G,
then v cannot have face configuration (3,3,4,5).
: Er;&f} Assume to the contrary that v has face configuration (3,3,4,5). Let N(v) =
u3,uz,us3,u4;.
Case 1. Suppose the cyclic order of the faces at v is (3,3,4,5), with faces uju,v,
uu3V, uscugv and ugbau;v. By Lemma 8, u; is not adjacent to y3. By Lemma 9, Uy is
j uz is not adjacent to a, U is not adjacentto b, and yy j i t

not adjacent to ug, Uz 1 ) U2 is not adjacent to c.
By Lemma 10, uy is not adjacent 10 ug, u3 is not adjacent to u4, and a is not adjacent to us.

Case 1.1. Suppose a ~c.

Case 1.1.1. Suppose ¢ ~ uy. Then {up,u3} is a cutset for G. So ¢ is not adjacent
toum.

Thus, there exists x ~ uj such that xe {a,b,c,v,uz,u3,u4}.

Case 1.1.2. If x ~ u3, then {x,u;} is a cutset for G. So x is not adjacent to us.

Case 1.1.3. Suppose ¢ ~ x. Let m ~ u3 such that me {v,c,u2}. Then {bm,u}
and {c} don't extend to disjoint maximum independent sets in G. So ¢ is not adjacent to x.

Case 1.1.4. If x ~ uy, then {c,x} and {v} don't extend to disjoint maximum
independent sets in G. So u; is not adjacent to x.

Thus, there exists y ~ uz such that ye {a,b,c,v,x,u;,u3,us}.

Case 1.1.5. If c ~ y, then {b,uz} and {c} don't extend. So c is not adjacenttoy.

Case 1.1.6. If x is not adjacent to y, then {c,x,y} and {v} don't extend to disjoint
maximum independent sets in G. So x ~y.

Case 1.1.7. Suppose y ~ u3. If y ~ a, then x is a cutpoint for G. So y is not
adjacent to a. Thus, there exists z ~ y such that 2¢ {a,b,c,v,x,u;,uz,u3,us}. But then

{g,)ul,m} and {us} don't extend to disjoint maximum independent sets in G (see Figure
16).

Hence, y is not adjacent to u3. Since G is planar, {b,y,u3} is independent; so
{b,y,u3} and {u;} don't extend to disjoint maximum independent sets in G.

Therefore, a is not adjacent to ¢. Let y ~ uj such that ye {a,b,c,v,u;,u3,u4}.
Case 1.2. Suppose a ~y.

Case 1.2.1. Suppose y ~ u;. If y is not adjacent to c, then {y,c} and (v) dont
extend to disjoint maximum independent sets in G. Soy ~ ¢ and {c,u3) is a cutset for G.
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Thus, y is not adjacent to u;. Let x ~ uj such that xe {a,v,u;}.

Case 1.2.2. Suppose y is not adjacent to x. If y is not adjacent to c, then {x,y,c)
and {v) don't extend to disjoint maximum independent sets in G. Soy ~c. Then either
{u;,a} or {u3,c} is a cutset for G (see Figure 17).

Figure 17

. Thus y ~ x. Since G is 4-regular, y is not adjacent to at least one of u3 or ug. Then
either { é,u3} and {u;} or {y,us} and {u;} don't extend to disjoint maximum independent
sets in G.

Hence, a js not adjacent to y.
Case 1.3. Supposey ~c.

Case 1.3.1. Suppose y ~ u3 (see Figure 18).

Figure 18

Either we have a (3,3,3,4) face configuration at u3, or we have a point inside
triangle yuous or inside triangle ycus. From Lemma 12.2, we cannot have a (3,3,3,4) face
configuration at us. If there is a point inside triangle yusus, then y is a cutpoint,
contradicting 3-connectedness. If there is a point inside triangle ycus, then {y,c} is 2
cutset, contradicting 3-connectedness.

Case 1.3.2. Soy is not adjacent to u3. Let m ~u3 such that me {v,c,uz) and letz

~ m such that ze {c,y) (see Figure 19). Then (z,u;,u4) and {u3) don't extend to disjoint
maximum independent sets in G.
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Figure 19

Hence, y is not adjacent to ¢. It follows that {a,y,c] is independent and so {a,y,c}
and {v} don't extend to disjoint maximum independent sets in G.
Thus, the cyclic face configuration (3,3,4,5) cannot occur.
Case 2. Assume the cyclic face configuration is (3,4,3,5), with faces ujuyv,
uzcusv, usugv and ugbau;v. By Lemma 9, 2 js not adjacent to up, b i i
Ui T i ¥ Lci s Ty T
i » and u) is not adjacent to u3. By Lemma 10, uy j j

a, uy is not adjacent to b, and y) is not adjacent to us. So there exists y ~ g such thar
ye {a,b,c,v,u;,uz,u3}.

Case 2.1. Suppose a ~c. Let x ~u; such that x¢ {a,v,u;). Ifc ~x orc~b, then
{u;,u4} and {c} don't extend to disjoint maximum independent sets in G. So c is adjacent
to neither x nor b. Thus, {b,c,x} is independent since G is planar. It follows that {b,c.x}
and {v} don't extend to disjoint maximum independent sets in G.

Thus, 2 is not adjacent to ¢ and, by symmetry, b is not adjacent to ¢.

Case 2.2. Suppose y ~ u;. Let z ~ b such that ze {a,y,us}. Then {c,z,uy} is
independent and so {c,z,u;} and {u4} don't extend to disjoint maximum independent sets
in G. So y is not adjacent to u;.

Thus, there exists x ~ u; such that x¢ {a,b,c,v,y,uz,u3,u4}.

Case 2.3. Supposey ~c.

Case 2.3.1. If x ~c, then {u;,u4) and {c) don't extend to disjoint maximum
independent sets in G. So x is not adjacent to ¢.

Case 2.3.2. Suppose x ~b. If b ~ uy, then {a,x} is a cutset for G. So b is not
adjacent to u;.

Case 2.3.2.1. Suppose y ~ uj. Let t ~ ¢ such that t¢ {y,us,u3}. Then {a,t,uy)

and {uz} don't extend to disjoint maximum independent sets in G. So y is not adjacent to
uz.

Case 2.3.2.2. Suppose x ~ uz (see Figure 20).
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Y
Figure 20

(i) Suppose y ~u3. If y ~ x, then {a,b} is a cutset for G. So y is not adjacent to x.
But then {x,y} and (v} don't extend to disjoint maximum independent sets in G.

(ii) Thus, y is not adjacent to u3. So there exists z ~ u3 and w ~ z such that
ze {c,v,y,uq) and we {c,y}. Then {w,b,uz} and {u3} don't extend to disjoint maximum
independent sets in G.

So x is not adjacent to uz. Thus, there exists d ~ u, such that

de {a,b,c,v,x,y,uj,u3,ug} (see Figure 21).

Figure 21

Case 2.3.2.3. If b is not adjacent to d, then {b,d,u3} and {u;} don't extend 10
disjoint maximum independent sets in G. Sob ~d. Then { axx) is a cutset for G.

Thus, x is not adjacent to b. It follows that {bx,c} is independent and so {bx,c)
and {v) don't extend to disjoint maximum independent sets in G.

Hence, v js not adjacent to ¢ and, by symmetry, x is not adjacent to c.

Case 2.4. Suppose a ~y. Then {b,x,c} is independent since G is planar. Hence,
{b,x,c} and {v} don't extend to disjoint maximum independent sets in G. Thus, a_is not

V.

So (a,c,y} is independent; thus, {a,c,y) and {v) don't extend to disjoint maximum
independent sets in G.

Hence, the cyclic face configuration (3,4,3,5) cannot occur. It follows that G
cannot have a point with face configuration (3,3,4,5). 0
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Lemma 12.7. Suppose G is 3-connected 4-regular planar and in W,. Thea G
cannot have a point with face configuration (3,3,4,n), n 2 6.

Proof. Assume to the contrary that v has face configuration (3,3,4,n), n 2 6. Let
N(v) = {uy,u2,u3,u4}.

Case 1. Assume the cyclic face configuration is (3,4,3,n). Let the faces at v be
ujuaV, uzbuzv, uzugv and wyde. . .acuyv (¢ =a whean = 6). By Lemma 10, u; is adjacent
1o neither us nor d, and ¢ is adjacent to neitheruanord. By Lemma 9, b j
uy, b is not adjacent to ug, Uy is not adjacent 1o ug4, and gy i ‘

Suppose b ~ c. Lety ~ u; such that y¢ {c,v,u;)}.

If b ~ d, then {u;,u4) and {b} don't extend to disjoint maximum independent sets
in G. So b is not adjacent to d. If b ~y, then {b,us} and {u;} don't extend to disjoint
maximum independent sets in G. So b is not adjacent to y. Since b is not adjacent o y,
then {b,d,y} is independent and so {b,d,y} and {v} don't extend to disjoint maximum
independent sets in G.

Thus, b is not adjacent to ¢ and, by symmetry, b is not adjacent to d. Tt follows that
{b,c,d} and {v} don't extend to disjoint maximum independent sets in G.

Hence, the cyclic face configuration (3,4,3,n), n 2 6, is not possible.

Case 2. Assume the cyclic face configuration is (3,3,4,n), n 2 6, with faces uju,yv,
uzu3v, usbuyv and ugde. . .acu)v (¢ = a when n =6). By Lemma 8, y; is not adjacent to
u3. By Lemma 10, u; is adjacent to neither us nor d, ¢ is adjacent to neither us nord and
us is not adjacent to us. By Lemma 9, b is not adjacent to us and x js not adjacent to u,,
for any x in the n-face at v, x& {v,u;}. So therc exists § ~ up such that

se (a,b,c,d,v,u;,u3,ue} and s is not on the n-face at v.

Case 2.1. Suppose b ~d. Let y ~ ug such that ye {b,d,v}, and w ~ y such that

we {b,d}). If e is not adjacent to us3, then {e,w,u3} and {u4) don't extend to disjoint
maximum independent sets in G. So ¢ ~ u3. Then {d,u;} and {u3} don't extend w0
disjoint maximum independent sets in G. :

Thus, b is not adjacent to d.

Case 2.2. Suppose b ~C.

Case 2.2.1. If b ~ u;, then {a,v} and {b} don't extend to disjoint maximum
independent sets in G. So b is not adjacent to u;.

Case 2.2.2. If ¢ ~ u3, then {uy,u2} is a cutset for G. So c is not adjacent to us.

Thus, there exist points x and t such that x ~ u3, t ~ u; and {x,t} N

{b,c,v,uj,uz,u3) =, If x =t, then {u1,u4} and {u3} don't extend to disjoint maximum
independent sets in G. Sox #t.

Case 2.2.3. Suppose t ~ b. Then {u;,x,d}) is independent since x # t and G is
planar. It follows that {uy,x,d} and {b} don't extend to disjoint maximum independent
sets in G. So tis not adjacent to b.

- Case 2.2.4. Suppose t ~ uz. Then {t,b) and {v} don't extend to disjoint
maximum independent sets in G. So t is not adjacent to u,.

Since G is 4-regular, there exists z ~ t such that z& {c,x} (see Figure 22). Thus zis
not adjacent to u3, and so {a,z,u3} is independent. It follows that {a,z,u3} and (u,} don't
extend to disjoint maximum independent sets in G.
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Figure 22

Therefore, b is not adjacent to c.
Case 2.3. Suppose s ~ .

Case 2.3.1. If s ~ b, then either {c,u;} or {b,u3} must be a cutset of G. So s is
not adjacentto b.

Case 2.3.2. If s ~ uj, then {s,b} and (v} don't extend to disjoint maximum
independent sets in G. So s is not adjacent to u;.

Let w ~ uy such that we (v,c,us}.

Case 2.3.3. If w is not adjacent to s, then {w,s,b} and {v} don't extend to disjoint
maximum independent sets in G. Sow ~ 5.

Case 2.3.4. If s ~ u3, then {b,u;) and {s} don't extend to disjoint maximum
independent sets in G. So s is not adjacent to us; hence, {s,u3} and {u;} don't extend to0
disjoint maximum independent sets in G (see Figure 23).

Thus, § is pot adjacentto c.

Case 2.4. Suppose s ~ b.

Case 2.4.1. Suppose s ~ usz. If s is not adjacent to d, then {s,c,d} and (v} don"
extend to disjoint maximum independent sets in G. So s ~d. Then there exist t ~ uq such

that te (v,b,d,s}, and z ~ t such that z¢ {b,d}. It follows that {e,z,u3} is independent and
so {e,z,u3) and {us) don't extend to disjoint maximum independent sets in G.

Hence, s is not adjacent to u3. So there exists w ~ u3 such that we {s,b,v,u3).

Case 2.4.2. Suppose s ~ ug. If s is not adjacent to w, then {s,w,c} and (v} don't
extend to disjoint maximum independent setsin G. So s ~ w. Then {d,u3) and {s) don't
extend to disjoint maximum independent sets in G.

So s is not adjacent to ug.
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_ Case 2.43. Suppose s ~ w. Then {s,u4} and {u3} don't extend to disjoint

maximum independent sets in G. So s is not adjacent to w.

Let W = N(w) - us.

Case 2.4.4. Suppose b ~ w. Suppose s ~ x for some xe W-b. Then {vx} and
{b} don't extend to disjoint maximum independent sets in G. Let xe W-b. Then x is not
gdj(a}ccnt to s and so {s,x,us} and {u3} don't extend to disjoint maximum independent sets
in G.

So b is not adjacent to w. Since G is 4-regular, there exists ye W such that y is not

adjacent to s. But then {y,s,us} and {u3} don't extend to disjoint maximum independent
sets in G (see Figure 24).

Hence, s is not adjacent to b. It follows that {s,b,c} is independent and so {s,b,c}
and {v} don't extend to disjoint maximum independent sets in G.

So the cyclic face configuration (3,3,4,n), n 2 6, cannot occur. Thus, the face
configuration (3,3,4,n), n 2 6, cannot occur. 0

Lemma 12.8. Suppose G is 3-connected 4-regular planar and in W,. If v is a point in G,

then v cannot have face configuration (3,3,5.5).

( Pr@f.} Assume to the contrary that v has face configuration (3,3,5,5), with N(v) =
u,u2,u3,U4q 5.

Case 1. Assume the cyclic face configuration at v is (3,5,3,5), with faces uju,v,
uscduav, ususv and ugbauyv. By Lemma 9, a is not adjacent to us, a is not adjacent to ua,
b is not adjacent to up, b is not adjacent to us, ¢ is not adjacent to u;, ¢ is not adjacent to
uy, d is not adjacent to u;, d is not adjacent 1o ug4, Y;_i8 not adjacent to us3, and uj is not
adjacent to uy. By Lemma 10, a is not adjacent to ug4, b is not adjacent to uj, ¢ is not
adjacent to u3, d is not adjacent uy, u, is not adjacent to uy4, and 3 is not adjacent to u3.

Hence, there exists x ~ uj such that xe {a,b,c,d,v,uz,u3,u4}.

Case 1.1. Suppose a ~ c.

Case 1.1.1. Suppose x ~ uz. If b is not adjacent to d, then {x,b,d} and {v} don't
extend to disjoint maximum independent setsin G. Sob~d.

Let s ~ uj and t ~ uy4 such that se {d,v,u4,b} and te {b,v,u3,d}.

Case 1.1.1.1. If s =t, then {s,x} and {v} don't extend to disjoint maximum
independent sets in G. Sos=#t.

Case 1.1.1.2. If s is not adjacent to t, then {s,tx} and {v} don't extend to disjoint
maximum independent sets in G. So s ~ t. But then (a,s,u2} and {u4) don't extend to
disjoint maximum independent sets in G.
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Case 1.1.2. Thus x is not adjacent to uy. Lety ~ uj such that ye {v,c,u;). ¥xis

not adjacent to y, then we can proceed as in Case 1.1.1 to obtain a contradiction. Sox ~y
(see Figure 25).

Figure 25

Case 1.1.2.1. Suppose x ~ a. If x ~ ¢, then y is a cutpoint for G. So x is not

adjacent to ¢. Thus, there exists z ~ x such that z¢ {a,y,u;,c). Then {zuy,u4) is
indcc;pcndent and so {z,u,u4} and {a} don't extend to disjoint maximum independent sets
in G.

Case 1.1.2.2. Sox is not adjacent (0 a. Since G is 4-regular, a is not adjacent 10 at
least one of u3 or us. Then either {a,x,us} and {uz} or {ax,u3} and {u;} don't extend to
disjoint maximum independent sets in G.

Thus, ais not adjacentto ¢c. By symmetry, b is not adjacenttod.

Case 1.2. Suppose b~c.

Case 1.2.1. If b ~x, then {a,x} is a cutset for G. So b is not adjacent to x.

Case 1.2.2. If x ~ uy, then {x,b,d} and {v}) don't extend to disjoint maximum
independent sets in G. So x is not adjacent to u.

Let y ~ up such that ye {v,c,u;}.

Case 1.2.3. If y ~ x, then {x,d,us} and {u;) don't extend to disjoint maximum
independent sets in G. So y is not adjacent to x.

Case 1.2.4. If y is not adjacent to b, then (x,y,b,d)} is independent and so
{x,y,b,d} and {v) don't extend to disjoint maximum independent sets in G. So y~b.
Then {b,x,u3} and {u;} don't extend to disjoint maximum independent sets in G.

Hence, b is not adjacent to ¢ and, by symmetry, a is not adjacent to d.

If x is adjacent to any member of {b,c,u3}, then {b,c,u3} and {u,} don't extend 10
disjoint maximum independent sets in G. So X is adjacent to no member of {b.cuil.

Thus, there exists z ~ u3 such that ze {a,b,c,d,v,x,u;,uz,u4}. By symmetry with x, it
follows that z is adjacent to neither b nor¢.

If z is not adjacent to x, then {z,x,b,c} is independent and so {z,x,b,c} and {v)
don't extend to disjoint maximum independent setsin G. So z~x.

Suppose x ~ uz. If x ~ d, then {c,d} is a cutset for G. So x is not adjacent to d.
Then {x,b,d} and {v) don't extend to disjoint maximum independent sets in G. So x s

not adjacent to up and, by symmetry, z is not adjacent 1o ug.
Suppose x ~ u4. There exists t ~ a such that t¢ {b,x,u;} and {t,c,u4) is
independent. Then {t,c,us} and {u;) don't extend to disjoint maximum independent sets

in G. So x is not adjacent to u4 and, by symmetry, z is not adjacent to u,.
Hence, there exist points p and q such that p ~ up, g ~ g and {p,q} N

{a,b,c,d,v,x,z,u1,uz,u3,u4} =B. Since z ~ x from above and G is planar, then p  q and

p.is not adjacentto q. See Figure 26.



Figure 26

If p ~ d, then {d,u4,a} and {uz} don't extend to disjoint maximum independeant sets
in G. So p is not adjacent to d and, by symmetry, g is not adjacent to 3. Thus, {a,d,p.q}
is independent; it follows that {a,d,p,q} and {v} don't extend to disjoint maximum
independent sets in G.

Hence, the cyclic face configuration (3,5,3,5) cannot occur.

Case 2. Assume the cyclic face configuration at v is (3,3,5,5), with faces Uy,
uzu3v, uzdcusv and ugbauyv. By Lemma 8, uy is not adjacent to u3. By Lemma 9, u; is

» ais not adjacent to vy, b_xs_nm.adxmm.mu, ¢ is not adjacent 10 vy, and
d;um.admmx_to_u,z By Lemma 10, u; is not adjacent to us, u3 is not adjacent to us, d is
not adjacent to ug, a is not adjacent to us, b is not adjacent to u), and ¢ is not adjacent to w.

Thus, there exists w ~ u4 such that we {a,b,c,d,v,u;,us,u4}.

Case 2.1. If d ~ uy, then {b,u3} and {u;} don't extend to disjoint maximum
independent sets in G. So d is not adjacent to uy and, by symmetry, a is not adjacent to u;.

Case 2.2. Suppose w ~ a.

Case 2.2.1. If a ~ c, then {a,u3} and {u4} don't extend to disjoint maximum
independent sets in G. So a is not adjacent to ¢.

Case 2.2.2. Suppose ¢ ~ u;. Since a is not adjacent to c, there exists s ~ a such

that se {b,w,u;,c}. But then {s,u3,uq} is mdependcnt and so {s,u3,u4} and {u;} don't
extend to disjoint maximum independent sets in G. So c is not adjacent to u;.

Case 2.2.3 If w ~ u3, then {a,d,u3} and {us) don't extend to disjoint maximum
independent sets in G. So w is not adjacent to us.

Let t ~ u3 such that te {v,d,uz}.

.Case 2.2.4. If c ~ t, then {c,u;} and {u3} don't extend to disjoint maximum
independent sets in G. So c is not adjacent to t.

Thus, there exists z ~ ¢ such that z¢ {d,uq,a,u4,u2,w} and z is not adjacent to u;
(since G is 4-regular). See Figure 27.
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Case 2.2.5. If z ~ a, then {b,w} is a cutset for G. So z is not adjacent to 2. Then
{a,z,us} is independent and so {a,z,u3} and {us4} don't extend to disjoint maximum
independent sets in G.

Hence, w is not adjacent to a. By symmetry, w is not adjacent to d.

Case 2.3. Suppose a ~ d. Then there exists y ~ u; such that
ye {a,b,c,d,v,w,uj,u3,u4}.

Case 2.3.1. Suppose a ~y. Then (y,u;} is a cutset for G. So a is not adjacent to
y and, by symmetry, d is not adjacent to y.

Case 2.3.2. If y ~ u3, then (a,w,y} is independent and so {a,w,y} and (v} dont
extend to disjoint maximum independent sets in G. So y is not adjacent to u3 and, by
symmetry, y is not adjacent to uy.

Thus, there exists s ~ u3 such that s {a,b,c,d,w,v,y,u1,uz,u4}.

Case 2.3.3. If y ~ s, then {y,c,u;} and {u3} don't extend to disjoint maximum
independent sets in G. Soy is not adjacent to s.

Case 2.3.4. If a is not adjacent to s, then {a,y,w,s} is independent and so
{a,y,w,s} and {v} don't extend to disjoint maximum independent sets in G. Soa ~s.

Case 2.3.5. If s ~ u;, then {b,u3) and {u;} don't extend to disjoint maximum
independent sets in G. So s is not adjacent to u;.

So there exists x ~ u; such that x& {a,v,u2,y,s) (see Figure 28).
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Case 2.3.6. If y ~x, then {y,u3,b} and {u;} don't extend to disjoint maximum
independent sets in G.  Soy is not adjacent to x; it follows that (x,y,w,d} is independent.
Thus, {ic{,y,w,d} _and {v} gion't extend to disjoint maximum independent sets in G.

ence, .

Case 2.4. If w ~ uy, then {a,d,w} and {v} don't extend to disjoint maximum

independent sets in G. So w j j .

Thus, there exists y ~ up such that ye {a,b,c,d,v,w,ny,03,u4}.

Case 2.5. If a ~y, then {a,d,u4} and {u;} don't extend to disjoint maximum
independent sets in G. So ais not adjacentto y. By symmetry, d is not adjacent to v.

Case 2.6. Suppose y ~ w.

Case 2.6.1.. Suppose y ~ uy. If y ~ b, then {a,u3,u4) and {y} don't extend to
disjoint maximum independent sets in G. Soy is not adjacent to b. Then {b,d,y} and (v}
don't extend to disjoint maximum independent sets in G.

Thus, y is not adjacent to u; and, by symmetry, y is not adjacent to us.

Case 2.6.2. If y ~c, then {a,y,u3} and {u4} don't extend to disjoint maximum
independent sets in G. So y is not adjacent to ¢ and, by symmetry, y is not adjacent to b.

Case 2.6.3. Consequently, y has two neighbors z; and z; such that {z;,z3) N

{a,b,c,d,w,v,uj,uz,uz,us} = 3. If a ~ z; and a ~ z, then {u;,z;} is a cutset for G, for
some i. If d ~ z) and d ~ 2, then {u3,z;) is a cutset for G, for some i. If z; is adjacent to
neither a nor d, for some i, then {z;,a,d,us} and {uz} don't extend to disjoint maximum
independent sets in G. Thus, without loss of generality, we can assume z; ~ a and z;~d
(see Figure 29).

Figure 29

" If z;~ uy, then {b,y,u3} and {u;} don't extend to disjoint maximum independeat
sets in G. So z; is not adjacent to u;.

Thus, there exist x ~ u; and t ~ x such that xe& {a,v,y,uz,z;} and te {a,z;}. But
then {t,b,u3} is independent and so {t,b,u3} and {u;} don't extend to disjoint maximum
independent sets in G.

Hence, y is not adjacent to w; thus, the set {a,y,d,w} is independent. It follows
that {a,y,d,w} and {v} don't extend to disjoint maximum independent sets in G.

So the cyclic face configuration (3,3,5,5) cannot occur. Therefore, the face
configuration (3,3,5,5) cannot occur. 0

Lemma 12.9. Suppose G is 3-connected 4-regular planar and in Wj. If v is a point in G,
then v cannot have face configuration (3,3,5,n), forn=60r7.
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Proof. Assume to the contrary that v has face configuration (3,3,5,n), n = 6 or 7.
Let N(v) = {uj,uz,u3,ug}.

Case 1. Suppose the cyclic face configuration is (3,5,3,n), with faces ujuyv,
uzabusv, usu4v and ugdefcu;v (e = f for the n = 6 case). By Lemma 9, a is not adiacent to
u), bis not adjacent to uy, a is not adjacent 10 ug, b is not adjacent to wy, ¢ is not adjacent 1o
w2, d is not adjacent to uy, ¢ is not adjacent 1o uy, f is not adjacent to uy, ¢ is not adjacent to
u3, dis not adjacent to u3, ¢ is not adjacent to u3, f is not adjacent to us, u; is not adjacent
10 uy, and u3 is not adjacent 10 u;. By Lemma 10, g, is not adjacent to uy, 12 is not

cen » ¢ is not adjacent to d, a is not adjacent to 3, b is not adjacent 10 uy, ¢ is not
adjacent to us and d is not adjacent to u;.

Thus, there exists x ~ uj such that xe {a,b,c,d,e,f,v,u;,u3,u4).

Case 1.1. Suppose a ~ c. Then there exists z ~ u; such that
ze {a,b,c,d,e,f,v,uz,us3,ug}.

Case 1.1.1. If a ~ z, then (a,u3} and {u;} don't extend to disjoint maximum
independent sets in G. So a is not adjacent to z.

Case 1.1.2. If z~cand z ~ uy, then (z,a} is a cutset for G. So z is not adjacent to
at least one of ¢ and u,.

Since G is 4-regular, there exist points s and t adjacent to z such that {s,t} N

{a,c,uz} = . Now either a is not adjacent to t or a is not adjacent to s. Say a is not
adjacent to t. Then {a,t,u3} is independent and so {a,t,u3} and {u;} don't extend to
disjoint maximum independent sets in G.

Thus, ais not adjacent to ¢. By symmetry, b is not adjacent to d.

Case 1.2. Suppose x ~ u3. Lett~b such that te {a,x,u3}. Then {t,d,u;) is

independent since G is planar. So (t,d,uz} and {u3} don't extend to disjoint maximum
independent sets in G.

Thus, x is not adjacent to u3. Lety ~ u3 such that ye {a,b,c,d,e,f,v,x,u1,u,,u4)}
(see Figure 30).

Figure 30

Case 1.3. Suppose x ~ ¢. If b is not adjacent to c, then {b,c,us} and {u;} don't

extend to disjoint maximum independent sets in G; so b ~ c. Let w ~ f such that we {c,v}.
Then {uj,u3,w} and {c} don't extend to disjoint maximum independent sets in G.

Hence, x is not adjacent to ¢. By symmetry, y is not adjacent to d.

Case 1.4. Suppose b ~ x. If b is not adjacent to ¢, then {b,c,us) and {uy) don't
extend to disjoint maximum independent sets in G. So b ~ ¢ and {a,x} is a cutset for G.

Thus, bis not adjacent to x and, by symmetry, g is not adjacent to y.

Case 1.5. Supposed ~ x. If a~d, then {c,d,u3} and {u;} don't extend to disjoint
maximum independent sets in G. So a is not adjacent to d. Then {a,c,d,y) is independent
and so {a,c,d,y) and {v} don't extend to disjoint maximum independent sets in G.
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Thus, d_u_md.\as.cmm and, by symmetry, ¢ js not adjacentto y.

If x ~y, then {a,c,d,y} is independent. So {a,c,d,y} and {v} don't extend tw0
disjoint maximum independent sets in G. Thus, x is not adjacent to y and it follows that
{c,d.x,y} is independent. Hence, {c,d,x,y} and {v} don't extend to disjoint maximum
independent sets in G.

Thus, the cyclic face configuration (3,5,3,n), n = 6 or 7, is not possible.

Case 2. Suppose the cyclic face configuration is (3,3,5,n), with faces ujuyv,
uju3v, uscdugv and ugbefau)v (e = f when n =6). By Lemma 8§, u1is not adjacent to u3.
By Lemma 9, 3 is not adjacent to uy, b is not adjacent to uy, ¢ is not adjacent to g, d is not
a_dlas;s_uu(z) ¢ is not adjacent 1o uy, £ is not adjacent to uy, and u, is not adjacent 10 us.
By Lemma 10, a is not adjacent to uy, ¢ is not adjacent to u4, u; is not adjacent to w4, u3is
not adjacent to uy, 3 is not adjacent to b, b is not adjacent to u), and d is not adjacent to vs.

Thus, there exists y ~ uj such that ye (a,b,c.d,ef,v,u;,03,u4].

Case 2.1. If a ~ u3, then {d,u;} is independent and so {d,u;} and {u3} don't
extend to disjoint maximum independent sets in G. So a is not adjacent to u3 and, by
symmetry, ¢ is not adjacent to u,.

Case 2.2. Suppose b ~ c. Since ¢ is not adjacent to ug4, then there exists w ~ uy

such that we {b,c,d,v}. If w ~c, then {w,d} is a cutset for G. So w is not adjacent to c,

and there exists s ~ w such that s¢ {b,c,d,u4}.

Case 2.2.1. If c is not adjacent to s, ther {c,s,uz} and {us} don't extend to
disjoint maximum independent sets in G. So ¢ ~ s (see Figure 31).

Figure 31

Case 2.2.2. If w ~ b, then let t ~ e such that t # b. Then {s,v,t} and {b)} don't
extend to disjoint maximum independent sets in G. So w is not adjacent to b.

- Thus, there exists z ~ w such that z¢ (b,c,d,s,us}. Then {c,z,u;} is independent
and so {c,z,u2} and {us} don't extend to disjoint maximum independent sets in G.
Therefore, b is not adjacent to ¢.
Case 2.3. Suppose a ~ C.
Case 2.3.1. Suppose y is not adjacent to uj. Let x ~ u; such that

x¢ {a,b,c,d,e.f,v,y,uz,u3,us}. If y ~c, then {cx,u4} and {uv7} don't extend to disjoint
maximum independent sets in G. So y is not adjacent to c. If y ~ x, then {y,f,u4} and
{u1} don't extend to disjoint maximum independent sets in G. So'y is not adjacent to x. If
x ~ ¢, then {y,c,us) and {u;} don't extend to disjoint maximum independent sets in G. So
x is not adjacent to C.

Thus, (x,y,b,c} is independent and so {x,y,b,c] and {v} don't extend to disjoint
maximum mdcpendent setsin G. Soy ~uy.
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Case 2.3.2. If y ~ u3, then (y,d} and {v) don't extend to disjoint maximum
independent sets in G. So y is not adjacent to us.

Case 2.3.3. If y ~c, then {y,u3) is a cutset for G. Soy is not adjacent to c.

Thus, {y,b,c} is independent and so {y,b,c} and (v} don't extend to disjoint
maximum independent sets in G.

Hence, a is not adjacentto ¢.

. Case 2.4. Suppose b ~ uz. Then there exists t ~ ¢ such that te {d,us}, t is oot
adjacent to ug, and {t,uy,ua} is independent. Thus, {t,m;,u4} and {u3} don't extend to
disjoint maximum independent sets in G.

So b is not adjacent to u3.

~ Case 25. Ifa~yorc~y, then {2,c,u4) and {uy} don't extend to disjoint
maximum independent sets in G. So y is adjacent to neither a nor ¢.

_ Case 2.6. Suppose b ~y. Ify~uq, then {a,c,y} and {v} don't extend to disjoint
maximum independent sets in G. So y is not adjacent to ug and there exists w ~ ug such
that we {b,c,d,v,y,us}.

o Case _2.6.1. . Suppose y ~ w. If y ~ uy, then {a,n3,u4} and {y} don't extend to
disjoint maximum independent sets in G. So y is not adjacent to uy. But then {c,y,u}
and [u4) don't extend to disjoint maximum independent sets in G.

Case 2.6.2. So'y is not adjacent to w (see Figure 32). If w ~ c, then {c,e,uz} and
(ug) don't extend to disjoint maximum independent sets in G. So w is not adjacent to c.
Then {a,c,w,y) and (v} don't extend to disjoint maximum independent sets in G.

Figure 32

Hence, b_is not adjacent to v; it follows that {a,b,c,y} is independent and so
{a,b,c,y} and {v} don't extend to disjoint maximum independent sets in G.

Thus, the cyclic face configuration (3,3,5,n), n = 6 or 7, cannot occur. Therefore,
the face configuration (3,3,5,n), n = 6 or 7, cannot occur. 0

Lemma 12.10. Suppose G is 3-connected 4-regular planar and in W>. If v is a pointin G,
then v cannot have face configuration (3,4,4,4).

Proof. Assume to the contrary that v has face configuration (3,4,4,4). Let N(v) =
{ug,uz,u3,u4). Assume the faces at v are ujuyv, uzbuzv, usdugv and wsauyv. By Lemma
9, a is not adjacent u; and b is not adjacent to u;.

If a is not adjacent to b, then {a,b} and {v} don't extend to disjoint maximum
independent sets in G. So a=b.

Let x ~ uj, x¢ {a,v,uz}, and y =~ up, y¢ {b,v,n;}. Ifx =y, then (x,d} and {v]
don't extend to disjoint maximum independent sets in G. Sox#y. If x is not adjacent 10
y, then {x,y,d} and {v} don't extend to disjoint maximum independent sets in G. Sox~
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y. Since G is planar, {x,u3} is independent. Thus, {x,u3} and {u;} don't extend to
disjoint maximum independent sets in G.
Therefore, the face configuration (3,4,4,4) cannot occur. 0

Lemma 12.11. Suppose G is 3-connected 4-regular planar and in W». If v is a point in G,

then v cannot have face configuration (3,4,4,5).

: mt} Assume to the contrary that v has face configuration (3,4,4,5). Let N(v) =
uj,u,us,ug4}.

Case 1. Suppose the cyclic order of the faces is (3,4,5,4). Let the faces be uju,v,
usbusv, uzcdugv and ugau;v.

By Lemma 9, a is not adjacent to uj and b is not adjacent to uj. By Lemma 10, g3
is not adjacent to 4, d is not adj , and ¢ is not adj .

If a is not adjacent to b, then {a,b} and {v} don't extend to disjoint maximum
independent sets in G. So a~b. Thus, there exist x ~ u) and y ~ uy such that {x,y} N
{a,b,c,d,v,uj,uz,u3,u4} = 3.

If a ~ us, then {y,a} is independent and so {y,a} and {v) don't extend to disjoint
maximum independent sets in G. So a is not adjacent to u3. Thus, there exists w ~ u3
such that we {a,b,c,d,v,x,y,uj,uz,u4}.

If w ~ d, then {d,u2} and {u3} don't extend to disjoint maximum independent sets
in G. So w is not adjacentto d. If x =y, then {w,x,d}and {v} don't extend to disjoint
maximum independent sets in G. So x #y. If x is not adjacent to y, then {dx,y,w} is
independent since G is planar. Then {d,x,y,w} and {v} don't extend to disjoint maximum
independent sets in G. So x ~ y. But then {x,u3} and {uz} don't extend to disjoint
maximum independent sets in G (see Figure 33). '

Thus, the cyclic face order (3,4,5,4) cannot occur.

Case 2. Suppose the cyclic order of the faces is (3,4,4,5). Let the faces be ujuyv,
uzbcusv, usdugv and ugau;v. By Lemma 9, u; is not adjacent to u3 and 2 is not adjacent to
u3. By Lemma 10, b1 jacen .

Suppose a ~ d. Then there exist points z and w such that w ~ u4, z ~ w,
we (a,d,v) and ze {a,d}. Since u, is not adjacent to u3, then {z,u3,u3} is independent.
Thus, {z,u;,u3} and {u4} don't extend to disjoint maximum independent sets in G.
Hence, a is not adjacent to d.

Suppose a ~ b. Let x ~ uz such that x¢ {b,v,u;}. If x ~ a, then {d,uz} and {a}
don't extend to disjoint maximum independent sets in G. So x is not adjacent to a. But
then {a,d,x} is independent and so {a,d,x} and {v} don't extend to disjoint maximum
independent sets in G. Thus, ai j .
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Suppose b ~d. Let z ~ u3 such that z¢ {c,d,v}. From above,b#z. Ifb~z, then
{b,us} and {u3} don't extend to disjoint maximum independent sets in G. So b is not
adjacent to z. Thus {a,b,z} is independent and so {a,b,z} and(v} don't extend to disjoint
maximum independent sets in G.

Hence, b is not adjacent to d. So {a,b,d} is independent. It-follows that {a,b,d}
and (v} don't extend to disjoint maximurn independent sets in G.

Thus, the cyclic face order (3,4,4,5) cannot occur. Therefore, the face
configuration (3,4,4,5) cannot occur. 0

Now we are ready to state the main result of this paper in Theorem 13. In
particular, there is only one 3-connected 4-regular planar W graph.

Theorem_13. Suppose G is 3-connected 4-regular planar and in W;. Then G is
isomorphic to the graph in Figure 4.
Proof. Since G is 4-regular, then the Euler contribution for any point u in G is

given by ¢(u) = 1 - deg(u)/2 + Z(1/x) =-1 + Z(1/x;), where the sum is taken over all faces
F; incident with u and x; is the size of face F;. From the discussion earlier, we know that

G must have a point with positive Euler contribution. Let v be a point in G with ¢(v) > 0.

Then Z(1/x;) > 1, where the sum is taken over the four faces Fy, F,, F3, F4 incident with v
and x; is the size of F, i = 1, 2, 3, or 4. The only solutions to the Diophantine inequality
X(1/x;)) > 1 are: (@) (3,3,3,n),forn23;

®) (3,3,4,n), for 4<n<1l;

(©) (3,3,5,n),for S<n<7;

and (d) (3,4,4,n),for 4sn<Ss.

Thus, v must have one of the face configurations given in (a)-(d). By Lemmas 12.1 -
12.11, it follows that G must be the graph given in Figure 4. 0

Open Questions

Some questions related to the content of this paper remain open. They include the
following:

(1) Are there any exactly 2-connected planar 4-regular 1-well-covered graphs?

(2) What are the planar 5-regular 1-well-covered graphs? The author conjectures
that there are no such graphs (although there are known nonplanar 5-regular 1-well-covered
graphs).

(3) Can the 4-regular 1-well-covered graphs be characterized? (In a computer
search on all regular graphs with at most 13 points, Royle [13] found that there are only
nine 4-regular 1-well-covered graphs.)
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